BMSCW LIBRARY QUESTION PAPER B.M.S COLLEGE FOR WOMEN AUTONOMOUS BENGALURU – 560004

END SEMESTER EXAMINATION – OCTOBER 2022

M.Sc. in Mathematics – II Semester Numerical Analysis I

Course Code: MM205T Duration: 3 Hours

QP Code: 21005 Max marks: 70

Instructions:	1) All questions carry equal marks.
	2) Answer any five full questions.

- 1. a) Show that the fixed point iteration method has a linear rate of convergence. Hence, find the real root of $x^3 + 4x^2 10 = 0$.
 - b) Find the smallest root of the equation $x^3 9x^2 + 26x 24 = 0$ using Ramanujan's method.

(7+7)

- 2. a) Perform two iterations of the Bairstow's method to estimate the quadratic factor $x^4 3x^3 + 20x^2 + 44x + 54 = 0$ with $p_o = q_o = 2$.
 - b) State Descarte's rule of signs and Sturm's theorem . Find the number of real and complex roots of $x^3 5x + 1 = 0$.

(7+7)

- 3. a) Using Crout's method, solve the linear system of equations: 3x + y + z = 5; x + 3y + z = 5; x + y + 3z = 5.
 - b) Explain the terms "ill-conditioned" and "well-conditioned" with suitable examples. Show that the Hilbert matrix of order 3 is highly ill-conditioned by finding its condition number.

(7+7)

4. a) Solve the linear system of equations by using Thomas algorithm: $x_1 + 2x_2 = 5$; $2x_1 + 3x_2 - x_3 = 5$; $4x_2 + 2x_3 + 3x_4 = 26$; $2x_3 - 4x_4 = -10$.

b) Find the roots of the following system by Newton Raphson method $x^2 - y^2 = 4$; $x^2 + y^2 = 16$ with given initial conditions $x_o = y_o = 2\sqrt{2}$ (Perform two iterations).

- (7+7)5. a) Obtain the Lagrange's interpolating polynomial of degree n in its standard form.
- b) Find the rational approximation $R_{4,5}$ for the function $f(x) = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \frac{x^9}{9}$. Compare f(0.4) with the value obtained using the rational approximation. (7+7)
 - 6. a) Obtain the Newton's bivariate interpolation polynomial for the following table and hence find f(0.5,0.5).

y/x	x_0	<i>x</i> ₁	<i>x</i> ₂
y _o	1	3	7
y_1	3	6	7

	BMSCW LIBRARY			
		QUES	STIO	N PAPER
<i>y</i> ₂	7	11	17	

b) Obtain the natural cubic spline approximation for the following data:

x	1	2	3
y = f(x)	-9	-2	17

Compute f(1.5) and f(2.5).

- 7. a) Derive Gauss-Hermite two and three-point quadrature formula. b) Evaluate:

 - (i) $\int_0^1 \frac{dx}{1+x}$ using Gauss-Legendre two and three point formula. (ii) $\int_{-1}^1 (1-x^2)^{\frac{3}{2}} \cos x \, dx$ using Gauss-Chebyshev two and three point formula.
- 8. a) Derive Gauss-Lagaurre two and three-point quadrature formula.
 - b) Evaluate $\int_{1}^{5} \int_{1}^{5} \frac{dxdy}{\sqrt{x^2+y^2}}$ using trapezoidal and Simpon's rule with two sub intervals.
 - (7+7)

(7+7)

(7+7)