B.M.S COLLEGE FOR WOMEN AUTONOMOUS
 BENGALURU - 560004

END SEMESTER EXAMINATION - OCTOBER 2022

M.Sc. in Mathematics - II Semester
 Numerical Analysis I

Course Code: MM205T

Duration: 3 Hours

QP Code: 21005
 Max marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. a) Show that the fixed point iteration method has a linear rate of convergence. Hence, find the real root of $x^{3}+4 x^{2}-10=0$.
b) Find the smallest root of the equation $x^{3}-9 x^{2}+26 x-24=0$ using Ramanujan's method.
2. a) Perform two iterations of the Bairstow's method to estimate the quadratic factor $x^{4}-3 x^{3}+20 x^{2}+44 x+54=0$ with $p_{o}=q_{o}=2$.
b) State Descarte's rule of signs and Sturm's theorem. Find the number of real and complex roots of $\quad x^{3}-5 x+1=0$.
3. a) Using Crout's method, solve the linear system of equations:
$3 x+y+z=5 ; x+3 y+z=5 ; x+y+3 z=5$.
b) Explain the terms "ill-conditioned" and "well-conditioned" with suitable examples. Show that the Hilbert matrix of order 3 is highly ill-conditioned by finding its condition number.
4. a) Solve the linear system of equations by using Thomas algorithm:
$x_{1}+2 x_{2}=5 ; 2 x_{1}+3 x_{2}-x_{3}=5 ; 4 x_{2}+2 x_{3}+3 x_{4}=26 ; 2 x_{3}-4 x_{4}=-10$.
b) Find the roots of the following system by Newton Raphson method $x^{2}-y^{2}=4 ; x^{2}+y^{2}=16$ with given initial conditions $x_{o}=y_{o}=2 \sqrt{2}$
(Perform two iterations).
5. a) Obtain the Lagrange's interpolating polynomial of degree n in its standard form.
b) Find the rational approximation $R_{4,5}$ for the function $f(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}$.

Compare $f(0.4)$ with the value obtained using the rational approximation.
6. a) Obtain the Newton's bivariate interpolation polynomial for the following table and hence find $f(0.5,0.5)$.

y / x	x_{0}	x_{1}	x_{2}
y_{o}	1	3	7
y_{1}	3	6	7

y_{2}	7	11	17

b) Obtain the natural cubic spline approximation for the following data:

x	1	2	3
$y=f(x)$	-9	-2	17

Compute $f(1.5)$ and $f(2.5)$.
7. a) Derive Gauss-Hermite two and three-point quadrature formula.
b) Evaluate:
(i) $\int_{0}^{1} \frac{d x}{1+x}$ using Gauss-Legendre two and three point formula.
(ii) $\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{3}{2}} \cos x d x$ using Gauss-Chebyshev two and three point formula.
8. a) Derive Gauss-Lagaurre two and three-point quadrature formula.
b) Evaluate $\int_{1}^{5} \int_{1}^{5} \frac{d x d y}{\sqrt{x^{2}+y^{2}}}$ using trapezoidal and Simpon's rule with two sub intervals.

